#### Gluonic Poles T-odd PDFs and FFs

#### **Leonard Gamberg Penn State Berks**

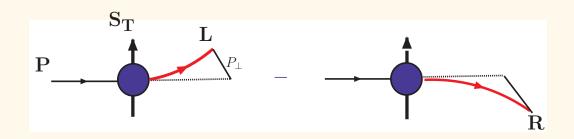


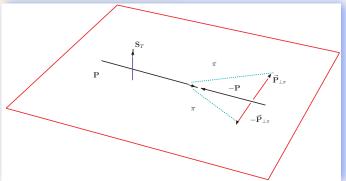
Based on PRD 77 I I 4026 (08) With Piet Mulders & Asmita Mukherjee and also Marc Schlegel

#### **OUTLINE**

- Transverse Single Spin effects Theory and Experiment
- "Explanations" Reaction Mechanisms
  - \* Colinear-limit ETQS-Twist Three . . .
  - **★ ISI/FSI-Twist Two**
- ullet Color Gauge Invariance in "T-odd" TMDs Distribution & Fragmentation
- Process Dependence and Gluonic Poles in TMDs and FFs
  - \* Gluonic Poles and TMDs and Fragmentation Functions
  - \* Universality and Fragmentation
- ullet Sivers, Collins, Boer-Mulders in SIDIS & Drell Yan &  $e^+e^-$

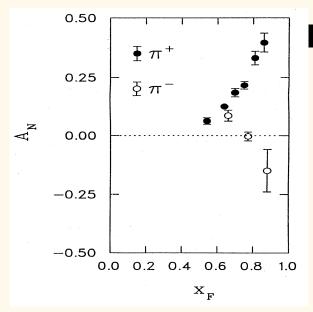
#### Transverse SPIN Observables SSA (TSSA) $p^{\uparrow}$ $p \rightarrow \pi X$





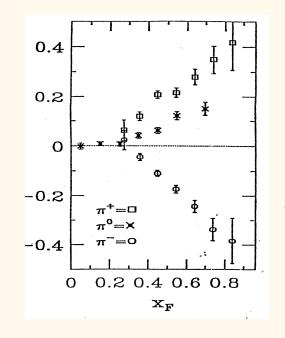
- Single Spin Asymmetry  $A_N = rac{\sigma^\uparrow(x_F, m{p}_\perp) \sigma^\uparrow(x_F, -m{p}_\perp)}{\sigma^\uparrow(x_F, m{p}_\perp) + \sigma^\uparrow(x_F, -m{p}_\perp)} \equiv \Delta\sigma$
- Rotational invariance  $\sigma^{\downarrow}(x_F, \boldsymbol{p}_{\perp}) = \sigma^{\uparrow}(x_F, -\boldsymbol{p}_{\perp})$  $\Rightarrow \boldsymbol{Left\text{-}\boldsymbol{Right}} \; \boldsymbol{Asymmetry}$
- \* Parity Conserving interactions: SSAs "Transverse" Scattering plane

 $\implies \Delta \sigma \sim i \mathbf{S}_T \cdot (\mathbf{P} \times \boldsymbol{P}_T^{\pi})$ 



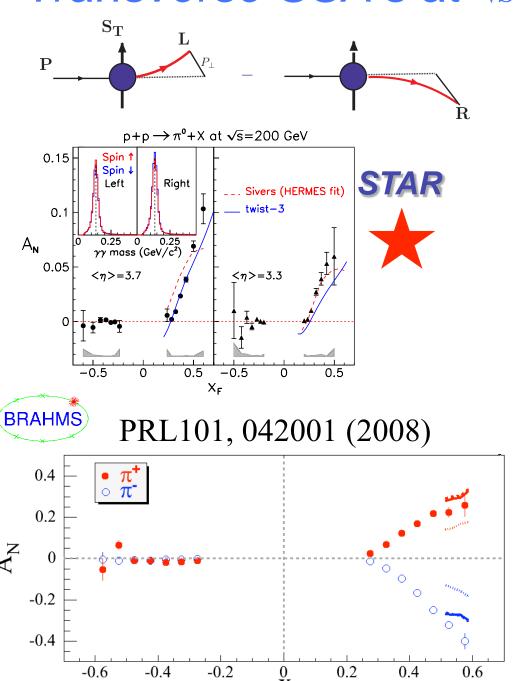
#### Argonne ZGS, p<sub>beam</sub> = 12 GeV/c

W.H. Dragoset et al., PRL 36, 929 (1976)



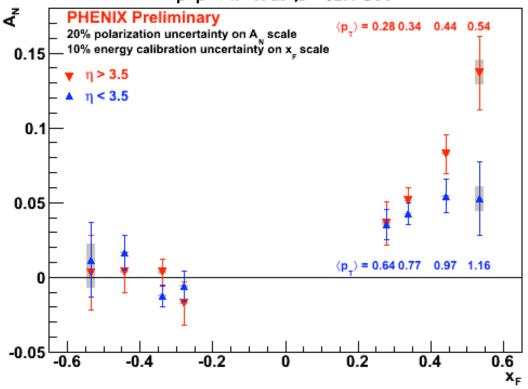
FNLAL
PLB261, 201 (1991)
PLB264, 462 (1991)  $\sqrt{s} = 200 \text{ GeV}$ 

## Transverse SSAs at $\sqrt{s} = 62.4$ GeV at RHIC





 $p+p \rightarrow \pi^0 + X$  at  $\sqrt{s} = 62.4$  GeV



#### Reaction Mechanisms: Co-linear QCD

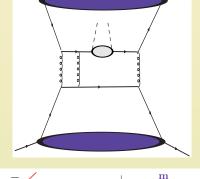
\* TSSA requires relative phase btwn different helicity amps

• 
$$|\uparrow /\downarrow \rangle = (|+\rangle \pm i|-\rangle) \Rightarrow \hat{A}_N = \frac{\hat{\sigma}^{\uparrow} - \hat{\sigma}^{\downarrow}}{\hat{\sigma}^{\uparrow} + \hat{\sigma}^{\downarrow}} \sim \frac{2 \operatorname{Im} f^{*+} f^{-}}{|f^{+}|^{2} + |f^{-}|^{2}}$$

**★ Co-linear factorized QCD-parton dynamics** 

$$\Delta \sigma^{pp^{\uparrow} o \pi X} \sim f_a \otimes f_b \otimes \Delta \hat{\sigma} \otimes D^{q o \pi}$$
Requires helicity flip-hard part  $\Delta \hat{\sigma} \equiv \hat{\sigma}^{\uparrow} - \hat{\sigma}^{\downarrow}$ 

• QCD interactions conserve helicity  $m_q \rightarrow 0$  and Born amplitudes real



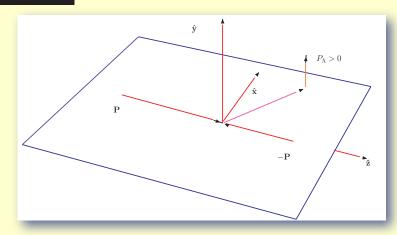


- $\star~A_N \sim rac{m{m}_q lpha_s}{E}$  Kane, Repko, PRL:1978
  - \* M. Anselmino hep-ph/0201150

    "This makes single spin asymmetries in the partonic interactions entirely negligible"

### QCD test- $\Lambda$ Production $pp o \Lambda^{\uparrow} \; X$

$$P_{\Lambda} = \frac{\sigma^{pp \to \Lambda^{\uparrow}X} - \sigma^{pp \to \Lambda^{\downarrow}X}}{\sigma^{pp \to \Lambda^{\uparrow}X} + \sigma^{pp \to \Lambda^{\downarrow}X}}$$



• Need strange quark to polarize a  $\Lambda$ 

#### Interference of loops and tree level Phases in hard part $\Delta \hat{\sigma}$

Dharmartna & Goldstein PRD 1990

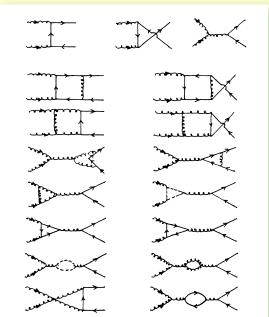


FIG. 1. Feynman diagrams for gluon fusion,  $g + g \rightarrow s + \bar{s}$ . In the second order, only the diagrams which contribute to the imaginary amplitude are shown.

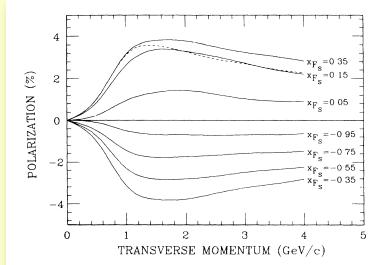


FIG. 4. Strange-quark polarization in the proton c.m. frame,  $P_{c.m.} = 14 \text{ GeV/}c(400\text{-GeV beam})$ , after the convolution for the initial state gluons.  $x_{F_s}$  is the Feynman x for the strange quark. Dashed curve corresponds to  $P_{c.m.} = 30.6 \text{ GeV/}c$ .

#### Early Experiment- $\Lambda$ Production $pp \to \Lambda^{\uparrow} X$

 $P_{\Lambda} = \frac{\sigma^{pp \to \Lambda^{\uparrow}X} - \sigma^{pp \to \Lambda^{\downarrow}X}}{\sigma^{pp \to \Lambda^{\uparrow}X} + \sigma^{pp \to \Lambda^{\downarrow}X}}$ 

Bunce. . . Heller PRL:1976. . . 1983

#### • Experiment at odd with this result

 $P_{\Lambda}$  in  $p\,p$  and  $p\,Be$  scattering-Fermi Lab

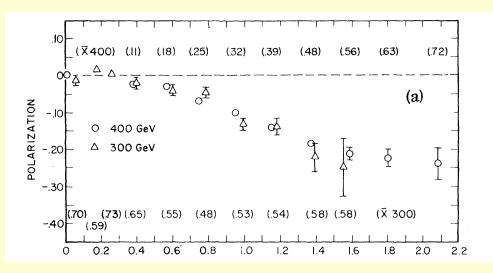
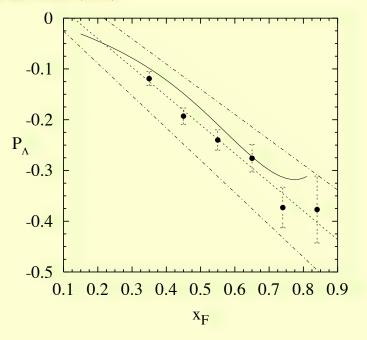


FIG. 3. (a)  $\Lambda^0$  polarization from this experiment compared to that from 300-GeV incident protons from Ref. 1 as a function of  $p_T$ . The number in parentheses is the average value of x for that point. (b)  $\Lambda^0$  and  $\overline{\Lambda}^0$  polarization from this experiment. The polarization is defined as positive along  $\hat{n} = (\vec{k}_p \times \vec{k}_{\Lambda}) / |\vec{k}_p \times \vec{k}_{\Lambda}|$ .

#### Non-perturbative origin many theorists. . .

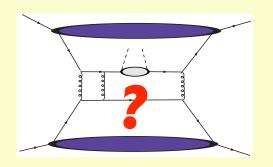
M. Anselmino, D. Boer, U. D'Alesio, and F. Murgia, Phys. Rev. D **63**, 054029 (2001).

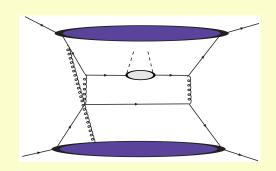


#### Daniel's talk tomorrow....

#### $Q \sim P_T >> \Lambda_{qcd}$ Co-linear Twist Three Mechanism

Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982





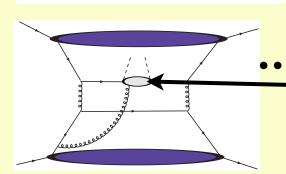
#### $\star$ Get helicity flips and phases $m_q \to \sim M_H$

•  $\Delta \sigma \sim f_a \otimes T_F \otimes H_{ETQS} \otimes D^{q \to \pi}$ 

Qiu-Sterman: PLB 1991, 1999, Koike et al. PLB 2000...2007,

Ji, Qiu, Vogelsang, Yuan: PR 2006, 2007. . .

#### **Transversity in pp Koike 2002**

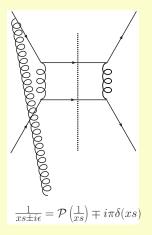


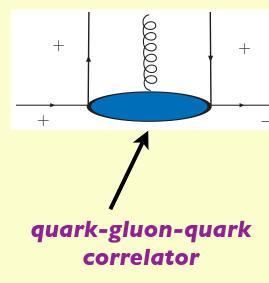
$$\Delta \sigma \sim \delta q(x) \otimes f(x') \otimes \hat{E}(z_1, z_2) \otimes \hat{\sigma}$$

\_\_quark-gluon-quark correlator-frag

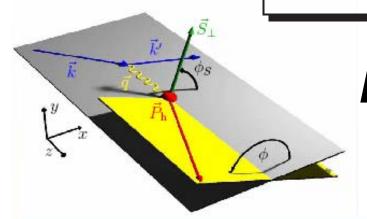
$$\Delta \sigma \sim \delta q(x) f(x') \otimes \hat{H}(z_1, z_2) \otimes \hat{\sigma}$$

related to Yuan, Zhou hep/ph-0903.4680

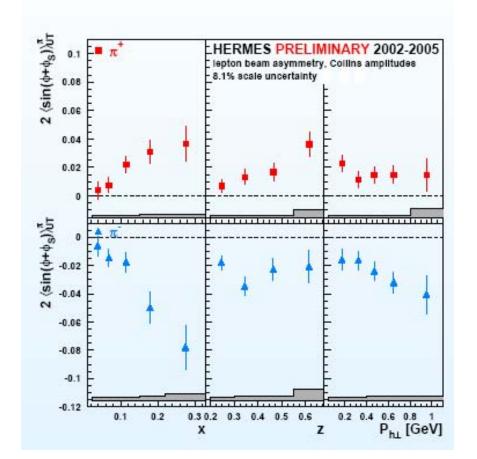


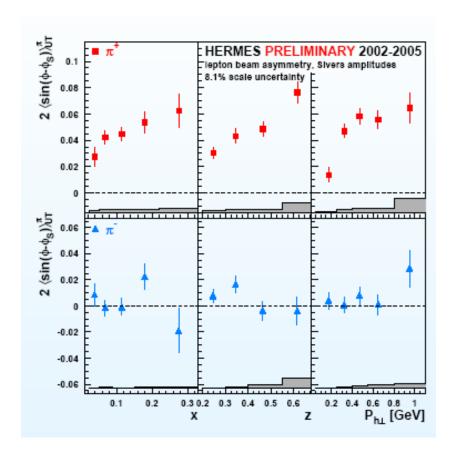






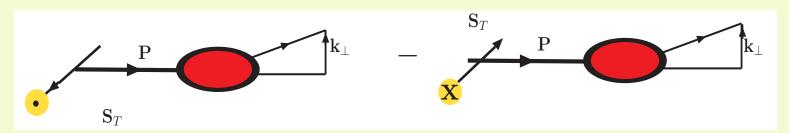
## **HERMES** $ep^{\uparrow} \Rightarrow \pi X$





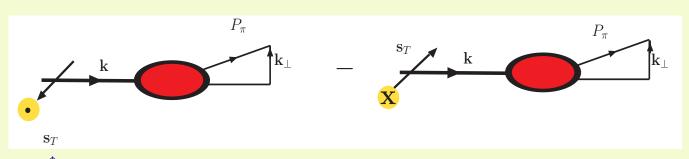
#### Sensitivity to $m{p}_T \sim k_{\perp} << \sqrt{Q^2}$ TSSAs thru "T-Odd" TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and momenta in initial state hadron



$$\Delta \sigma^{pp^{\uparrow} \to \pi X} \sim D \otimes f \otimes \Delta f^{\perp} \otimes \hat{\sigma}_{Born} \quad \Rightarrow \quad iS_T \cdot (\boldsymbol{P} \times \boldsymbol{k}_{\perp}) f_{1T}^{\perp}(x, \boldsymbol{k}_{\perp})$$

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting quark and transverse momentum of final state hadron

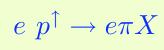


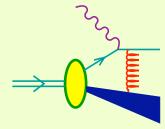
$$\Delta \sigma^{ep^{\uparrow} o e\pi X} \sim \Delta D^{\perp} \otimes f \otimes \hat{\sigma}_{Born} \quad \Rightarrow \quad is_T \cdot (\boldsymbol{P} \times \boldsymbol{p}_{\perp}) H_1^{\perp}(x, \boldsymbol{p}_{\perp})$$

#### Mechanism FSI produce phase in TSSAs-Leading Twist

Brodsky, Hwang, Schmidt PLB: 2002

#### SIDIS w/ transverse polarized nucleon target

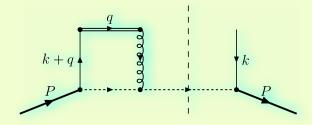




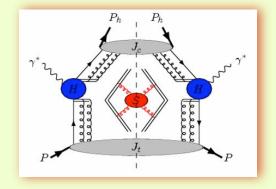
#### Ji, Yuan PLB: 2002 -Sivers fnct. FSI emerge from Color Gauge-links

Collins PLB 2002

L.G & Goldstein 2002, 2003 Boer-Mulders Fnct,



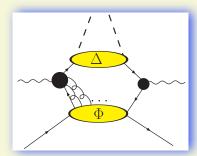
#### Ji, Ma, Yuan: PLB, PRD 2004, 2005 Extend factorization of CS-NPB: 81



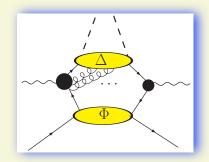
#### T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

Boer, Mulders: NPB 2000, & Pijlman (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003

$$\Phi^{[\mathcal{U}[C]]}(x, p_T) = \int \frac{d\xi^- d^2 \xi_T}{2(2\pi)^3} e^{ip \cdot \xi} \langle P | \overline{\psi}(0) \mathcal{U}_{[0,\xi]}^{[C]} \psi(\xi^-, \xi_T) | P \rangle |_{\xi^+ = 0}$$



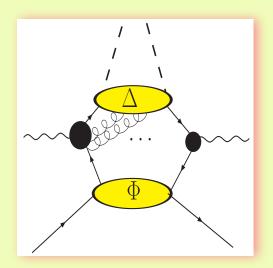
$$\Delta^{[\mathcal{U}[\mathcal{C}]]}(z,k_T) = \int \frac{d\xi^+ d^2\xi_T}{4z(2\pi)^3} e^{ik\cdot\xi} \langle 0 | \mathcal{U}_{[0,\xi]}^{[C]} \psi(0) | x; P_h \rangle \langle x; P_h | \overline{\psi}(\xi^+,\xi_T) | 0 \rangle |_{\xi^-=0}$$



#### T-Odd Effects From Color Gauge Inv. via Wilson Line

Amsterdam group Boer Mulders, Pijlman, Bomhof et al. 2003 - 2008 ....

- Sub-class of interactions of colinear & transverse gluons re-summed to render physical process color gauge invariant
- Gauge link emerges from resummation of gluon ISI and FSI btw. active quark and hadron remnants



$$\rightarrow U_{[\eta,\xi]}^{[C]} = \mathcal{P}exp(-ig\int_C ds^{\mu}A_{\mu})$$

etc . . .

The path [C] is fixed by hard subprocess within hadronic process.

#### Diagramatic "Factorization" TMD Correlators Gauge Links

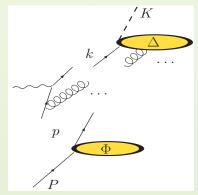
Politzer NPB 80, Ellis et al. NPB 82, Mulders et al. 1997

- Restricts hadrons well sep. in momentum phase-space  $P \cdot K \sim p \cdot k \sim Q^2$
- Inside correlator momenta are soft  $P \cdot p \sim P^2 = M^2$
- Partons involved decomposed according to "Sudakov" P and n vectors

$$p = xP^{\mu} + p_T^{\mu} + \sigma n^{\mu}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\sim Q \qquad \sim M \qquad \sim M^2/Q$$



$$k = \frac{1}{z}K^{\mu} + k_{T}^{\mu} + \sigma_{h}n_{h}^{\mu}$$

$$p = xP^{\mu} + p_{T}^{\mu} + \sigma n^{\mu}$$

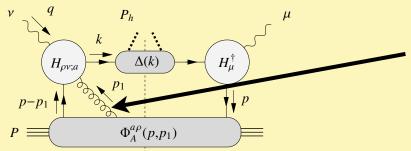
$$\sim Q \sim M \sim M^{2}/Q$$

$$n^2 = 0$$
,  $P \cdot n = 1$ ,  $K \cdot n_h = 1$ ,  $\sigma = (p \cdot P - xM^2) \sim M^2$ ,  $\sigma_h \sim M_h^2$  ...

**TMD-Integrate over** 
$$P \cdot p$$
  $\Phi^{[\mathcal{U}[\mathcal{C}]]}(x, p_T) = \int d(p \cdot P) \Phi(p, P)$ 

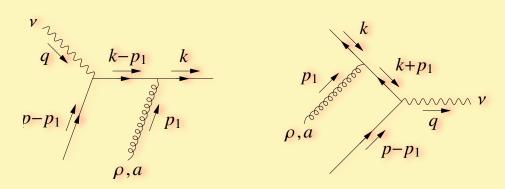
- **Organizes Twist Expansion**
- Determines gauge-link by summing collinear & transverse gluon interactions btwn. soft & hard

## Summation of gluons from soft to hard at leading twist involves gluons collinear to hadron's momentum $\bullet$ $A^{\mu} \propto (A \cdot n) P^{\mu} + A_T^{\mu}$



Bomhof, Mulders, Pijlman, Boer et al. Gauge link determined by resumming all gluon interactions btwn soft and hard

$$\frac{1}{2M} \int d^4p \, d^4k \, d^4p_1 \, \delta^4(p+q-k) \, \text{Tr} \left[ \Phi_A^{a\rho}(p,p_1) H_\mu^{\dagger}(p,k) \, \Delta(k) H_{\rho\nu;a}(p,k;p_1) \right]$$



Note(!) interactions between lines which are connected to "same" jet absorbed into matrix element, e.g. Pijlman Ph.D. thesis 2006



The hard tree amplitudes in SIDIS and DY dressed with leading co-linear gluon insertions "eikonalize". Convoluting this hard amplitude with soft factors determines "[C]" factors

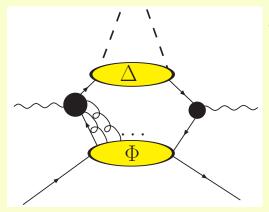
$$\int d^4p \, d^4k \, \delta^4(p+q-k) \operatorname{Tr} \left[ \Phi_{(g)}^{[U_{[\infty,\xi]}^n]}(p) H_{\mu}^{\dagger}(p,k) \Delta(k) H_{\nu}(p,k) \right]$$

• The path [C] is fixed by hard subprocess within hadronic process.

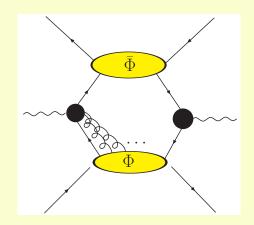
#### T-Odd Effects From Color Gauge Inv. via Wilson Line

**Prediction of QCD** 
$$f_{1T_{SIDIS}}^{\perp}(x, k_T) = -f_{1T_{DY}}^{\perp}(x, k_T)$$

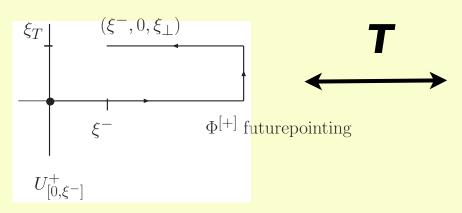
#### Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02



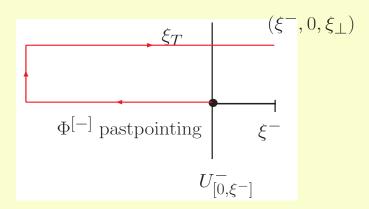
$$d\sigma = L_{\mu\nu} \mathcal{W}^{\mu\nu} \Rightarrow$$



#### **SIDIS Hadronic Tensor**



#### **Drell-Yan Hadronic Tensor**



$$\Phi^{[+]*}(x, p_T) = i\gamma^1 \gamma^3 \Phi^{[-]}(x, p_T) i\gamma^1 \gamma^3$$

# TMD Correlator in SIDIS expanded in DFs and FFs which are T-odd and even



$$\Delta(z, \boldsymbol{k}_{\perp}) = \frac{1}{4} \{ D_{1}(z, \boldsymbol{k}_{\perp}) \not h_{-} + H_{1}^{\perp}(z, \boldsymbol{k}_{\perp}) \frac{\sigma^{\alpha\beta}k_{\perp\alpha}n_{-\beta}}{M_{h}} + D_{1T}^{\perp}(z, \boldsymbol{k}_{\perp}) \frac{\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}n_{-}^{\nu}k_{\perp}^{\rho}S_{hT}^{\sigma}}{M_{h}} + \cdots \}$$

$$\Phi(x, \boldsymbol{p}_{\perp}) = \frac{1}{2} \{ f_{1}(x, \boldsymbol{p}_{\perp}) \not h_{+} + h_{1}^{\perp}(x, \boldsymbol{p}_{\perp}) \frac{\sigma^{\alpha\beta}p_{T\alpha}n_{+\beta}}{M} + f_{1T}^{\perp}(x, \boldsymbol{p}_{\perp}) \frac{\epsilon^{\mu\nu\rho\sigma}\gamma^{\mu}n_{+}^{\nu}p_{\perp}^{\rho}S_{T}^{\sigma}}{M} \cdots \}$$

#### SIDIS cross section

$$d\sigma^{\ell N \to \ell \pi X}_{\{\lambda,\Lambda\}} \propto f_1 \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes D_1 + \frac{k_\perp}{Q} f_1 \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes D_1 \cdot \cos \phi$$

$$+ \begin{bmatrix} \frac{k_\perp^2}{Q^2} f_1 \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes D_1 + h_1^\perp \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes H_1^\perp \end{bmatrix} \cdot \cos 2\phi$$

$$+ |S_T| \cdot h_1 \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes H_1^\perp \cdot \sin(\phi + \phi_S) \quad \text{Collins}$$

$$+ |S_T| \cdot f_{1T}^\perp \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes D_1 \cdot \sin(\phi - \phi_S) \quad \text{Sivers}$$

$$+ |S_L| \cdot h_{1L}^\perp \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes H_1^\perp \cdot \sin(2\phi) \quad \text{Kotzinian-MuldersPLB}$$

#### Azimuthal asymm. corresponds to transv. moments of correlator In factorized processes

$$\Phi_{\partial}^{\alpha[\mathcal{U}]}(x) = \int d^2k_T k_T^{\alpha} \Phi^{[\mathcal{U}]}(x, k_T).$$

**Decomposes** 

$$\Phi_{\partial}^{\alpha [\mathcal{U}]}(x) = \tilde{\Phi}_{\partial}^{\alpha}(x) + C_G^{[\mathcal{U}]} \pi \Phi_G^{\alpha}(x, x),$$

T-even

T-odd

$$\epsilon_T^{ij} k_{\perp}^i S_T^j f_{1T}^{\perp(1)}(x, k_{\perp}^2) \sim \int d^2 k_T \, k_T^i \, \frac{1}{2} \left[ \text{Tr}[\gamma^+ \Phi(\vec{S}_T)] - \text{Tr}[\gamma^+ \Phi](-\vec{S}_T) \right]$$

$$A_{UT}^{P_{h\perp}/M} \sin(\phi - \phi_S)(x, z) = \frac{(-2) \sum_a e_a^2 x f_{1T}^{\perp(1)a}(x) D_1^a(z)}{\sum_a e_a^2 x f_1^a(x) D_1^a(z)}$$

$$2\pi\Phi_{G}^{\alpha}(x,x) = (ih_{1}^{\perp(1)}\frac{1}{2}[P,\gamma^{\alpha}] + \epsilon_{T}^{\alpha} f_{1T}^{\perp(1)}(x)P)$$

Weighted Cross Sections contain ETQS Functions LINK BTW TWO Pictures!

#### In azimuthal asymm. one uses transv. moments of the correlator

$$\Phi^{\alpha[\mathcal{U}]}_{\partial}(x) = \int d^2k_T k_T^{\alpha} \Phi^{[\mathcal{U}]}(x,k_T).$$
 Decomposes 
$$\Phi^{\alpha[\mathcal{U}]}_{\partial}(x) = \tilde{\Phi}^{\alpha}_{\partial}(x) + C_G^{[\mathcal{U}]} \pi \Phi^{\alpha}_G(x,x),$$
 T-even

• For the weighted cross sections the process dependence is in *gluonic* pole factors Bomhof, Pijlman, Mulders 2004-2008 JHEP,NPB...

$$< q_T^{\alpha} d\sigma> \sim \tilde{\Phi}_{\partial}^{\alpha[\mathcal{C}]}(x) \hat{\sigma}_{lq \to lq} \Delta(z) + C_G^{[U(C)]} \pi \Phi_G^{\alpha[\mathcal{C}]}(x,x) \hat{\sigma}_{lq \to lq} \Delta(z)$$

$$< q_T \; \sigma_{lH \to lhX}^{\mathrm{Sivers}}> \; \sim \; + f_{1T}^{\perp(1)}(x) \hat{\sigma}_{lq \to lq} D_1(z)$$

$$< q_T \; \sigma_{H\bar{H} \to l\bar{l}X}^{\mathrm{Sivers}}> \; \sim \; - f_{1T}^{\perp(1)}(x_1) \hat{\sigma}_{q\bar{q} \to l\bar{l}} \bar{f}_1(x_2)$$

$$f_{1T}^{\perp(1)}(x) \; = \; - \frac{g}{2M} T_F(x)$$
 Boer, Pijlman, Mulders 2003 NPB

# Similarly unintegrated fragmentation there are in principle "two" types of gauge links However more subtle!!! -Two types of T-odd effects Reliability of Transversity Extraction Universality of Collins Fragmentation Function

$$\Delta_{\partial}^{\alpha [\mathcal{U}]}(z) = \int d^2k_T \ k_T^{\alpha} \Delta^{[\mathcal{U}]}(z, k_T) = \tilde{\Delta}_{\partial}^{\alpha} \left(\frac{1}{z}\right) + C_G^{[\mathcal{U}]} \pi \Delta_G^{\alpha} \left(\frac{1}{z}, \frac{1}{z}\right)$$

$$\Delta^{[-]}(z, k_T) = \int \frac{d\xi^+ d^2 \xi_T}{4z(2\pi)^3} e^{ik\cdot\xi} \langle 0 | \boldsymbol{U}_{[-\infty,0]}^{[-]} \psi(0) | x; P_h \rangle \langle x; P_h | \overline{\psi}(\xi^+, \xi_T) \boldsymbol{U}_{[\xi,-\infty]}^{[-]} | 0 \rangle |_{\xi^-=0}$$

#### But no such constraint under time reversal

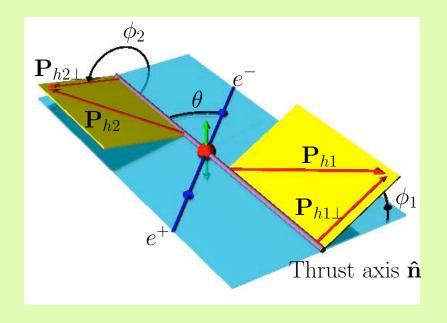
$$\Delta^{[+]*}(x,p_T) \neq i\gamma^1\gamma^3\Delta^{[-]}(x,p_T)i\gamma^1\gamma^3$$
 
$$\Delta^{\alpha}_{\partial}[C](z) = \tilde{\Delta}^{\alpha}_{\partial}[C]\left(\frac{1}{z}\right) + C^{[U(C)]}_{G}\pi\Delta^{\alpha}_{G}[C]\left(\frac{1}{z},\frac{1}{z}\right)$$
 T-odd-Gauge link

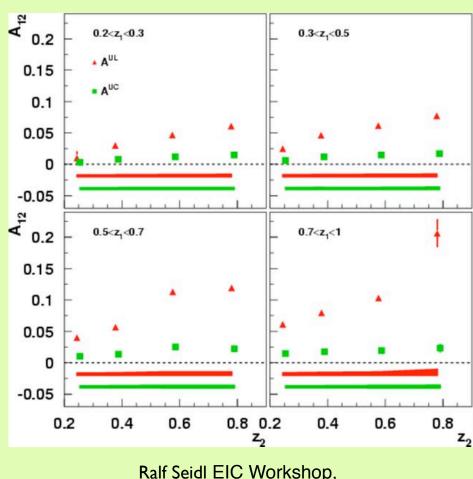
#### Reliability of Transversity Extraction Universality of Collins Fragmentation Function

## Belle KEKB measurement of the Collins Frag. Function PRL 2006 & arXiv:0805.2975

$$\frac{d\sigma(e^+e^- \to h_1 h_2 X)}{d\Omega dz_1 dz_2 d^2 q_T} = \cdots B(\Theta) \cos(\varphi_1 + \varphi_2) H_1^{\perp[1]}(z_1) \overline{H}_1^{\perp[1]}(z_2)$$

$$B(\Theta) = \frac{1}{4} \sin^2 \Theta$$





Ralf Seidl EIC Workshop, Hampton, VA May 08



• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting quark and transverse momentum of final state hadron

$$D_{h/q^{\uparrow}}(z, K_T^2) = D_1^q(z, K_T^2) + H_1^{\perp q}(z, K_T^2) \frac{(\hat{k} \times K_T) \cdot s_q}{zM_h},$$

$$\frac{\epsilon_T^{ij} k_{Tj}}{M_h} H_1^{\perp}(z, k_T^2) = \frac{1}{2} \operatorname{Tr} \left[ \Delta(z, k_T) i \sigma^{i} \gamma_5 \right].$$

$$\Delta_{\partial}^{\alpha [\mathcal{U}]}(z) = \int d^2k_T \ k_T^{\alpha} \Delta^{[\mathcal{U}]}(z, k_T) = \tilde{\Delta}_{\partial}^{\alpha} \left(\frac{1}{z}\right) + C_G^{[\mathcal{U}]} \pi \Delta_G^{\alpha} \left(\frac{1}{z}, \frac{1}{z}\right)$$

#### Spect. model workbench ISI/FSI in AA & TMDs $h_1^{\perp}$ , $f_{1T}^{\perp}$ , $H_1^{\perp}$ gluonic poles

$$\Phi^{[\mathcal{U}[\mathcal{C}]]}(x, p_T) = \int \frac{d\xi^- d^2 \xi_T}{2(2\pi)^3} e^{ip \cdot \xi} \langle P | \overline{\psi}(0) \mathcal{U}_{[0,\xi]}^{[C]} \psi(\xi^-, \xi_T) | P \rangle |_{\xi^+ = 0}$$

- Use Spectator Framework Develop a QFT to explore and estimates these effects with gauge links
  - \* BHS FSI/ISI Sivers fnct, -PLB 2002, NPB 2002
  - \* Ji, Yuan PLB 2002 Sivers Function
  - \* Metz PLB 2002 Collins Function
  - \* L.G. Goldstein, 2002 ICHEP- Boer Mulders Function
  - \* L.G. Goldstein, Oganessyan TSSA & AAS PRD 2003-SIDIS
  - **★ Boer Brodsky Hwang PRD 2003-Drell Yan Boer Mulders**
  - \* Bacchetta Jang Schafer 2004- PLB, Flavor-Sivers, Boer Mulders
  - \* Lu Ma Schmidt PLB, PRD, 2004/2005 Pion Boer Mulders
  - \* L.G. Goldstein DY and higher twist, PLB 2007
  - $\star$  LG, Goldstein, Schlegel PRD 2008-Flavor dep. Boer Mulders  $\cos 2\phi$  SIDIS
  - \* Conti, Bacchetta, Radici, Ellis, Hwang, Kotzinian 2008 hep-ph . . . !
- Spectator Model "Field Theoretic" used study Universality of T-odd Fragmentation  $\Delta_{ij}$ 
  - \* Metz PLB 2002, Collins Metz PRL 2004
  - \* Bacchetta, Metz, Yang, PBL 2003, Amrath, Bacchetta, Metz 2005,
  - \* Bacchetta, L.G. Goldstein, Mukherjee, PLB 2008
  - \* Collins Qui, Collins PRD 2007,2008
  - \* Yuan 2-loop Collins function PRL 2008
  - ★ L.G., Mulders, Mukherjee Gluonic Poles PRD 2008

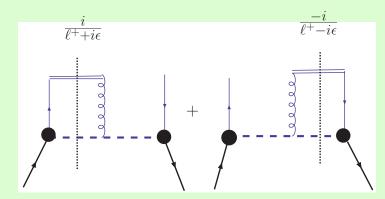
#### Mechanisms explored thru T-odd Contribution SIDIS and Drell Yan

Impacts pre and "post"-dictions at COMPASS, HERMES, JLAB 6 & 12 GeV FAIR, RHIC, JPARC

#### $\cos 2\phi$ Asymmetry in SIDIS-"Boer Mulders Effect"

\* Early wk. in spectator framework Goldstein, L.G., ICHEP 2002; hep-ph/0209085 L.G., Goldstein, Oganessyan, PRD 2003, Boer Brodsky Hwang, PRD 2003

$$h_1^{\perp(s)}(x,k_{\perp}) = f_{1T}^{\perp(s)}(x,k_{\perp})$$



• Collins, Sivers and Boer Mulders Asymmetries with Gaussian Distribution in  $k_{\perp}$  L.G., Goldstein, Oganessyan, PRD 67 (2003)

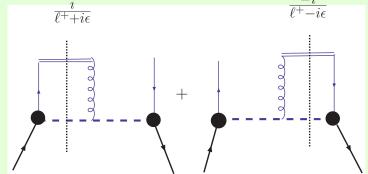
$$h_1^{\perp}(x, k_{\perp}) = \alpha_s \mathcal{N}_s \frac{M(m + xM)(1 - x)}{k_{\perp}^2 \Lambda(k_{\perp}^2)} \mathcal{R}(k_{\perp}^2, x)$$

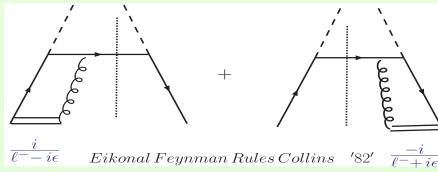
#### Revisit Gluonic Poles contributions-Fragmentation & Universality

(Gamberg, Mukherjee, Mulders PRD-2008)

- By contrast to one and two loop calcs. studying cuts we explore parton correlator with one additional gluon taking the zero  $k_1^{\pm} \rightarrow 0$  limit; gluonic pole matrix element/Efremov-Terayev-Qiu Sterman Matrix elements
- Gluonic Poles Identify the T-odd sources and possible non-universal or process dependent contributions in PDFs and FFs
   Boer, Pijlman, Mulders NPB 03, Bacchetta, Bomhof, Mulder, Pijlman PRD 05, Bomhof Mulders 07, 08, Bomhof, Mulders, Vogelsang, Yuan PRD 07.
- ullet In doing so we investigated the "reciprocity" btwn distrb. and frag. functions x 
  ightarrow 1/z

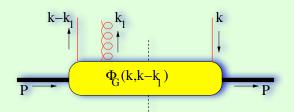
$$h_1^{\perp(1)}$$
 and  $H_1^{\perp(1)}$  for example  $\frac{i}{\ell^+ + i\epsilon}$ 

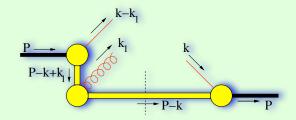


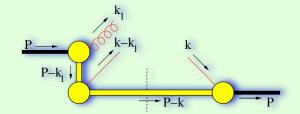


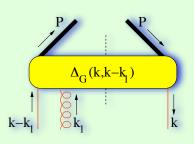
#### **Spectral Analysis Gluonic Poles-Fragmentation**

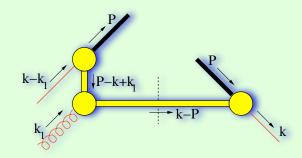
- In this approach rather than integrating over the longitudinal component of the "loop momenta" we look at the limit of a zero gluon momentum in quark-gluon-quark matrix element
- That is considering the multi-parton correlators  $\Phi_G(k,k-k_1)$  and  $\Delta_G(k,k-k_1)$  in light-cone gauge

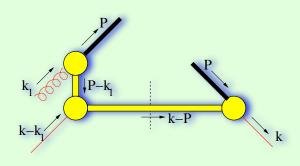








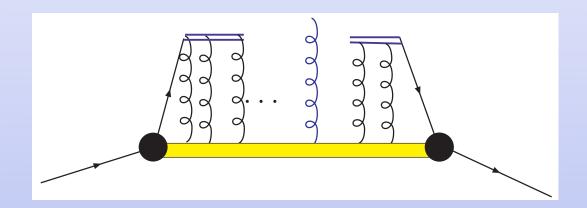




$$\Delta_{G\,ij}^{\alpha}(x, x - x_{1}) = \sum_{X} \int \frac{d(\xi \cdot P)}{2\pi} \frac{d(\eta \cdot P)}{2\pi} e^{i x_{1}(\eta \cdot P)} e^{i (x - x_{1})(\xi \cdot P)}$$

$$\times \langle 0 | \mathcal{U}_{[0, \eta]}^{n} g G^{n\alpha}(\eta) \mathcal{U}_{[\eta, \xi]}^{n} \psi_{i}(\xi) | P, X \rangle$$

$$\times \langle P, X | \overline{\psi}_{j}(0) | 0 \rangle \Big|_{LC}.$$



#### Calculate the Weighted Frag. correlator

The T-odd operator-combination that appears in the transverse moment,

$$\Delta^{lpha}_{\partial}(z;n,C) = \int d^2k_T k_T^{lpha} \Delta(x,k_T;n,C) = ilde{\Delta}^{lpha}_{\partial}(z) + \pi \Delta^{lpha}_{G}(z)$$

yields the gluonic pole matrix element which is characterized by the difference of the transverse gluon field at  $\pm\infty$ ,

$$\Delta_{G\,ij}^{\alpha}(z;n,C) = \sum_{X} \int \frac{d(\xi \cdot P_h)}{2\pi} e^{ik \cdot \xi} \langle 0 | (A_T^{\alpha}(\infty) - A_T^{\alpha}(-\infty)) \rangle$$

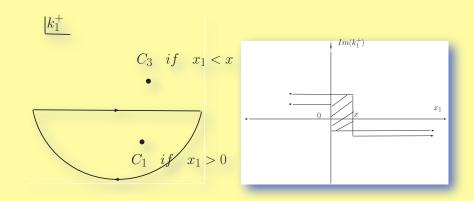
$$\times \psi_i(\xi) |P_h, X\rangle \langle P_h, X | \bar{\psi}_j(0) | 0 \rangle$$

$$\xi \cdot n_h = \xi_T = 0$$

where

$$A_T^{\alpha}(\infty) - A_T^{\alpha}(-\infty) = \int_{-\infty}^{\infty} d(\eta \cdot P_h) G^{n_h \alpha}(\eta) \Big|_{\eta \cdot n_h = \eta_T = 0}.$$

#### **Straightforward Integration**



$$\begin{split} &\Delta_{G}(x,x-x_{1}) \rightarrow \int dk^{+}d^{2}k_{T}dk_{1}^{+}d^{2}k_{1T}\delta((k-P_{\pi})^{2}-\mu^{2}) \\ &\times Tr\bigg[i(\not\!k+m)\gamma_{5}i(\not\!k-\not\!P_{\pi}+\mu)\gamma^{\alpha}i(\not\!k-\not\!k_{1}-\not\!P_{\pi}+\mu)\gamma_{5}i(\not\!k-\not\!k_{1}+m)\bigg] \\ &\times \frac{F'_{1}(k^{2},(k-P_{\pi})^{2})}{k^{2}-m^{2}+i\epsilon} \frac{F'_{2}(k_{1}^{2},k\cdot k_{1},k^{2})}{(k_{1}^{2}-\lambda^{2}+i\epsilon)((k-k_{1}-P_{\pi})^{2}-\mu^{2}+i\epsilon)} \frac{F'_{1}((k-k_{1})^{2},(k-k_{1}-P_{\pi})^{2})}{((k-k_{1})^{2}-m^{2}+i\epsilon)} \end{split}$$

$$I(x, k^{+}, k_{T}; x_{1}, k_{1T})$$

$$= \frac{1}{(k^{2} - m^{2} + i\epsilon)} \int \frac{dk_{1}^{+}}{(k_{1}^{2} - \lambda^{2} + i\epsilon)} \frac{1}{((k - k_{1} - P_{\pi})^{2} - \mu^{2} + i\epsilon)} \frac{1}{((k - k_{1})^{2} - m^{2} + i\epsilon)}$$

$$= \frac{1}{4Q^{4}xx_{1}(x - x_{1})(x - x_{1} - 1)} \frac{1}{\left(k^{+} - \frac{k_{T}^{2} + m^{2} - i\epsilon}{\sqrt{2}xQ}\right)}$$

$$\times \int \frac{dk_{1}^{+}}{\left(k_{1}^{+} - \frac{k_{1T}^{2} + \lambda^{2} - i\epsilon}{\sqrt{2}x_{1}Q}\right)} \frac{1}{\left(k_{1}^{+} - \left(k^{+} + \frac{(k - k_{1})_{T})^{2} + m^{2} - i\epsilon}{\sqrt{2}(x_{1} - x)Q}\right)\right)} \frac{1}{\left(k_{1}^{+} - \left(k^{+} - P_{\pi}^{+} + \frac{(k - k_{1})_{T}^{2} + \mu^{2} - i\epsilon}{\sqrt{2}(x_{1} - (x - 1))Q}\right)\right)}$$

#### Straightforward Integration

$$\Phi_{G}(x,x_{1}-x) \sim \frac{1}{(k^{2}-m^{2})} \left\{ \int \frac{dk_{1}^{-}}{2\pi i} \frac{F_{1}\left(k_{1}^{-},x,x_{1},k_{T},k_{1T}\right)}{(k_{1}^{2}-m_{1}^{2}+i\epsilon)((k-k_{1})^{2}-m^{2}+i\epsilon)((P-k+k_{1})^{2}-M_{s1}^{2}+i\epsilon)} + \int \frac{dk_{1}^{-}}{2\pi i} \frac{F_{2}\left(k_{1}^{-},x,x_{1},k_{T},k_{1T}\right)}{(k_{1}^{2}-m_{1}^{2}+i\epsilon)((k-k_{1})^{2}-m^{2}+i\epsilon)((P-k_{1})^{2}-M_{s2}^{2}+i\epsilon)} \right\}$$

where,  $F_i\left(k_1^-,x,x_1,k_T^2,k_{1T}^2\right)$  contain numerators and vertex functions

Parameterize gluon momentum 
$$k_1 = [k_1^-, x_1, k_{1T}],$$

• Assume numerator doesn't grow with  $k_1^-$  can perform  $k_1^-$  integrations

$$\Phi_{G} \sim \frac{1-x}{(\mu^{2}-k_{T}^{2})} \left\{ \int \frac{dk_{1}^{-}}{2\pi i} \frac{F_{1}(k_{1}^{-},x,x_{1},k_{T}^{2},k_{1T}^{2})}{(x_{1}k_{1}^{-}-A_{1}+i\epsilon)((x_{1}-x)k_{1}^{-}-A_{2}+i\epsilon)((1-x+x_{1})k_{1}^{-}-B_{1}+i\epsilon)} + \int \frac{dk_{1}^{-}}{2\pi i} \frac{F_{2}(k_{1}^{-},x,x_{1},k_{T}^{2},k_{1T}^{2})}{(x_{1}k_{1}^{-}-A_{1}+i\epsilon)((x_{1}-x)k_{1}^{-}-A_{2}+i\epsilon)((x_{1}-1)k_{1}^{-}-B_{2}+i\epsilon)} \right\},$$

## Glunonic Pole contribution for Frag. vanishes

Taking the limit  $x_1 \to 0$  we get the gluonic pole correlators, for distribution functions  $(0 \le x \le 1)$ ,

$$\Phi_G(x,x) = -\int d^2k_T d^2k_{1T} \frac{(1-x)F_1(x,0,k_T,k_{1T})\theta(1-x)}{(\mu^2 - k_T^2)(xB_1 + (1-x)A_2)A_1},$$

and for fragmentation functions  $(x = 1/z \ge 1)$ 

$$\Delta_G(x,x) = 0$$

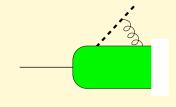
#### Comments $|h;X\rangle$

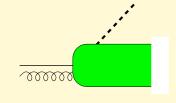
$$\Delta_{\partial}^{\alpha\,[C]}(z) \quad = \quad \tilde{\Delta}_{\partial}^{\alpha\,[\mathcal{C}]}\left(\frac{1}{z}\right) + C_{G}^{[U(C)]}\,\pi\Delta_{G}^{\alpha\,[\mathcal{C}]}\left(\frac{1}{z},\frac{1}{z}\right)$$
**T-odd T-odd**

• All "T-odd" effects for fragmentation in  $\tilde{\Delta}_{\partial}^{\alpha}\left(\frac{1}{z}\right)$  and no "process dependence"  $\Delta_{G}(x,x)=0$ .

$$\tilde{\Delta}^{\alpha}_{\partial}\left(\frac{1}{z}\right) \quad = \quad \frac{M}{z}iH_{1}^{\perp(1)}(z)\frac{1}{2}[K,\gamma^{\alpha}] \neq 0$$

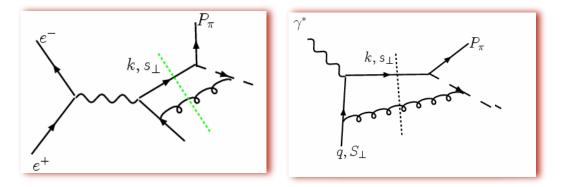
$$\pi \Delta_G(\frac{1}{z}, \frac{1}{z}; K) = \frac{M}{z} i \tilde{H}_1^{\perp (1)}(z) \frac{1}{2} [K, \gamma^{\alpha}] = 0$$





• Process dependence remains in the T-odd PDFs "jungle of Wilson lines" Mulders et al. 2004-present

$$C_G^{[\mathcal{U}]} \pi \Phi_G^{\alpha}(x,x)$$



#### Metz SIDIS& ee plb 2002 Meissner Metz PRL09

Asymmetric Azimuthal Distribution of Hadrons inside a Jet from Hadron-Hadron Collisions

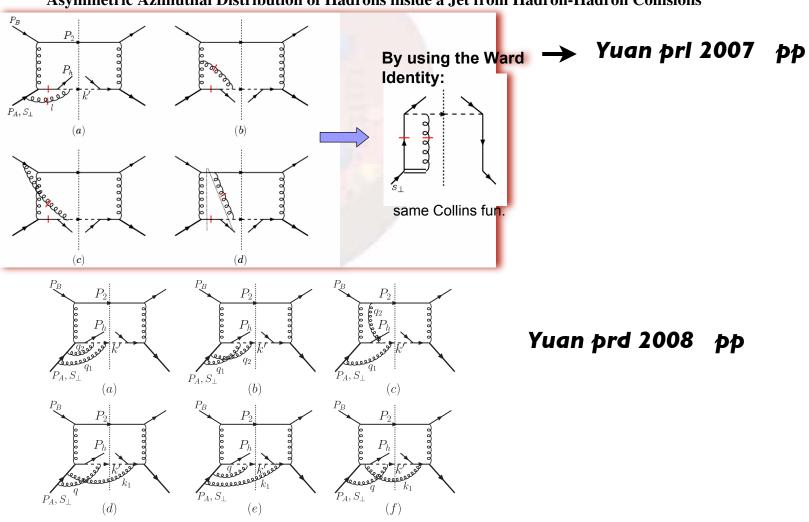
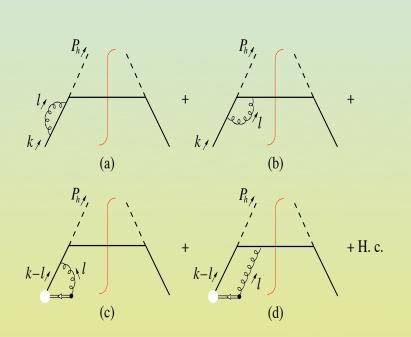
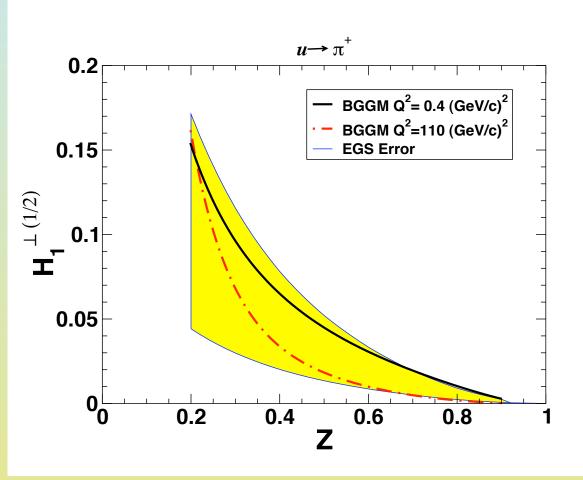


FIG. 6. Example diagrams for two-gluon exchange contributions (a,b,c) and one real gluon radiation contributions (d,e,f).

#### Bacchetta, L.G., Goldstein, Mukherjee Re-analysis and Kaons

**PLB 08** 





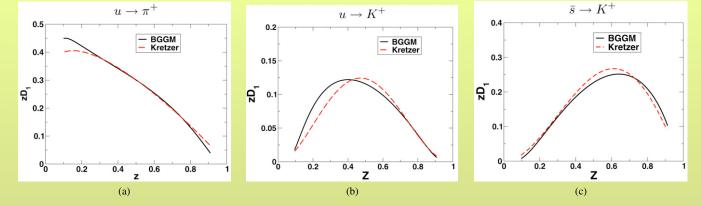


Fig. 2. Unpolarized fragmentation function  $zD_1(z)$  vs. z for the fragmentation (a)  $u \to \pi^+$ , (b)  $u \to K^+$ , (c)  $\bar{s} \to K^+$  in the spectator model (solid line), with parameters fixed from a fit to the parametrization of [29] (dashed line).

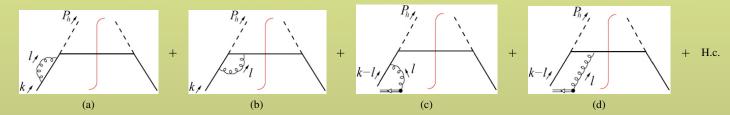


Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. "H.c." stands for the Hermitian conjugate diagrams which are not shown.

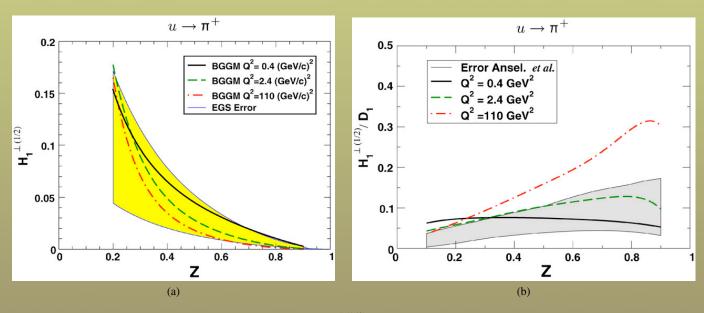


Fig. 4. Half moment of the Collins function for  $u \to \pi^+$  in our model. (a)  $H_1^{\perp (1/2)}$  at the model scale (solid line) and at a different scale under the assumption in Eq. (37) (dot-dashed line), compared with the error band from the extraction of Ref. [6], (b)  $H_1^{\perp (1/2)}/D_1$  at the model scale (solid line) and at two other scales (dashed and dot-dashed lines) under the assumption in Eq. (38). The error band from the extraction of Ref. [7] is shown for comparison.

Scaling-"evolution" 0.1

$$\left. \frac{H_1^{\perp (1/2)}}{D_1} \right|_{Q_0^2} = \frac{H_1^{\perp (1/2)}}{D_1} \right|_{Q^2},$$

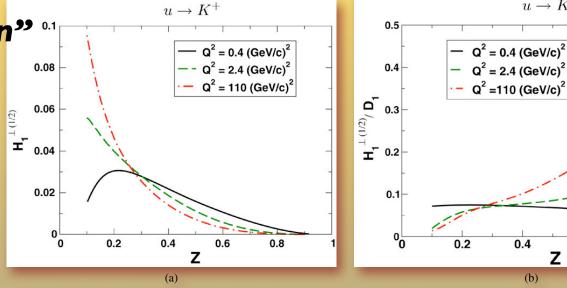


Fig. 5. Half moment of the Collins function for  $u \to K^+$  in our model. (a)  $H_1^{\perp (1/2)}$  at the model scale of 0.4 GeV<sup>2</sup>, (b)  $H_1^{\perp (1/2)}/D_1$  at the model scale (solid line) and at two other scales (dashed and dot-dashed lines) under the assumption in Eq. (38).

 $u \to K^+$ 

0.4

0.6

Z

8.0

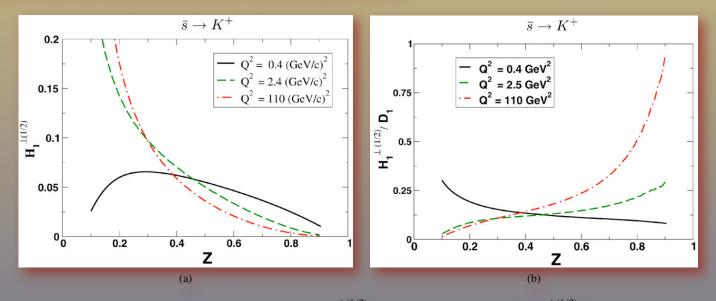


Fig. 6. Half moment of the Collins function for  $\bar{s} \to K^+$  in our model. (a)  $H_1^{\perp (1/2)}$  at the model scale of 0.4 GeV<sup>2</sup>, (b)  $H_1^{\perp (1/2)}/D_1$  at the model scale (solid line) and at two other scales (dashed and dot-dashed lines) under the assumption in Eq. (38).

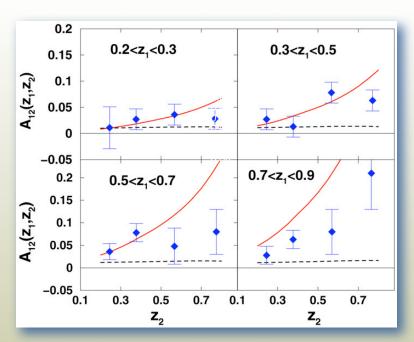
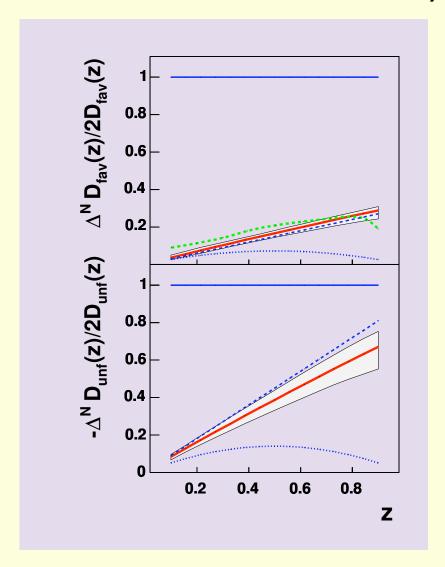


Fig. 7. Azimuthal asymmetry  $A_{12}(z_1, z_2)$  for the production of two pions as a function of  $z_2$  and integrated in bins of  $z_1$  at  $Q^2 = 110.7$  GeV<sup>2</sup>. Dashed lines are obtained assuming Eq. (37), solid lines assuming Eq. (38). Note that the last  $z_1$  bin in our calculation is narrower than in the corresponding experimental measurement.



Fig. 8. Azimuthal asymmetry  $A_{12}(z_1, z_2)$  for the production of two kaons as a function of  $z_2$  and integrated in bins of  $z_1$  at  $Q^2 = 110.7$  GeV<sup>2</sup>. Dashed lines are obtained assuming Eq. (37), solid lines assuming Eq. (38).

#### Anselmino Prokudin et al. Ferrara Transversity 08



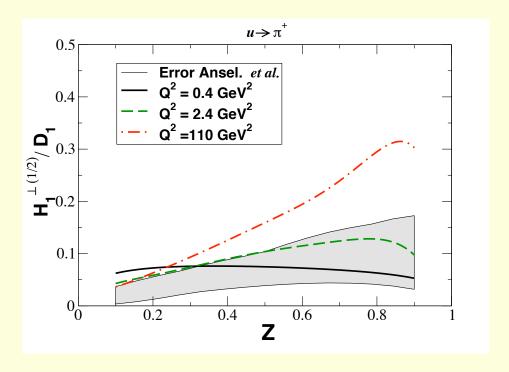
compared to Ref. [1] (dashed line), Ref. [2] (dotted line), and Ref. [3] (dashed green line)

[1] A. V. Efremov, K. Goeke, and P. Schweitzer, Phys. Rev. **D73**, 094025 (2006).

[2] W. Vogelsang and F. Yuan, Phys. Rev. D72, 054028 (2005).

[3] A. Bacchetta, L. Gamberg, G. R. Goldstein, A. Mukherjee PLB659:234-243,2008.

#### Bacchetta, Gamberg, Goldstein, Mukherjee PLB 08



#### Reliability of Transversity Extraction Universality of Collins Fragmentation Function

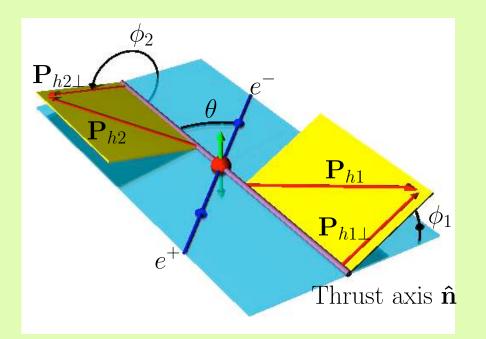
## Belle KEKB measurement of the Collins Frag. Function PRL 2006 & arXiv:0805.2975

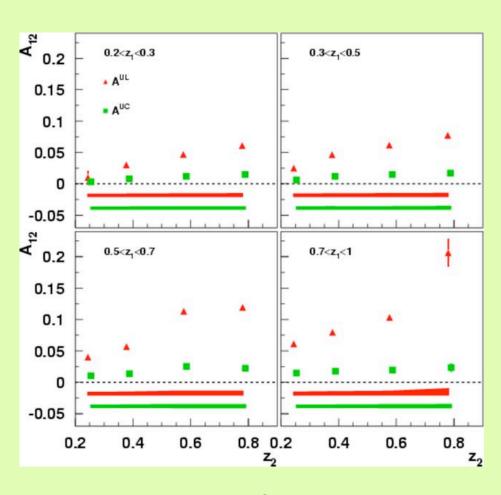
$$A_{12}(z_1, z_2) = \frac{\langle \sin^2 \theta \rangle}{\langle 1 + \cos^2 \theta \rangle} (P_U - P_L),$$

where

$$P_{U} = \frac{\sum_{q} e_{q}^{2} (H_{1(q \to \pi^{+})}^{\perp (1/2)}(z_{1}) H_{1(\bar{q} \to \pi^{-})}^{\perp (1/2)}(z_{2}) + H_{1(q \to \pi^{-})}^{\perp (1/2)}(z_{1}) H_{1(\bar{q} \to \pi^{+})}^{\perp (1/2)}(z_{2}))}{\sum_{q} e_{q}^{2} (D_{1(q \to \pi^{+})}(z_{1}) D_{1(\bar{q} \to \pi^{-})}(z_{2}) + D_{1(q \to \pi^{-})}(z_{1}) D_{1(\bar{q} \to \pi^{+})}(z_{2}))},$$

$$P_{L} = \frac{\sum_{q} e_{q}^{2} (H_{1(q \to \pi^{+})}^{\perp (1/2)}(z_{1}) H_{1(\bar{q} \to \pi^{+})}^{\perp (1/2)}(z_{2}) + H_{1(q \to \pi^{-})}^{\perp (1/2)}(z_{1}) H_{1(\bar{q} \to \pi^{-})}^{\perp (1/2)}(z_{2}))}{\sum_{q} e_{q}^{2} (D_{1(q \to \pi^{+})}(z_{1}) D_{1(\bar{q} \to \pi^{+})}(z_{2}) + D_{1(q \to \pi^{-})}(z_{1}) D_{1(\bar{q} \to \pi^{-})}(z_{2}))}.$$

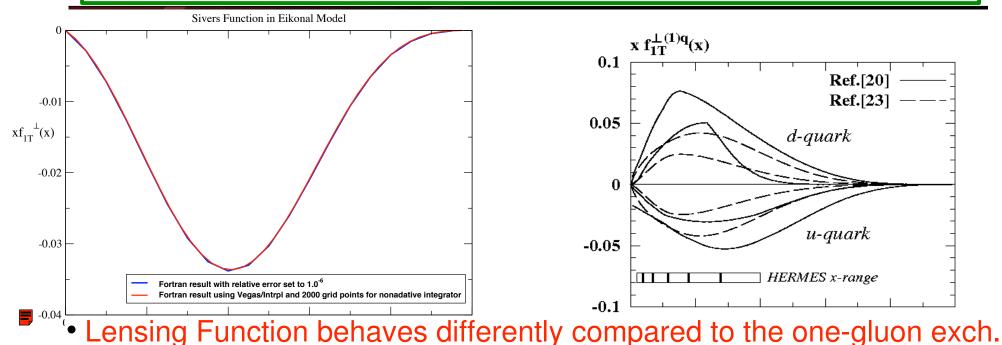




Ralf Seidl EIC Workshop, Hampton, VA May 08

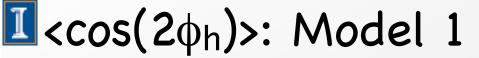
## Preliminary Results

$$f_{1T}^{\perp,(1)u}(x) = -\frac{1}{2(1-x)M^2} \int \frac{d^2p_T}{(2\pi)^2} p_T^y I^y(x, |\vec{p_T}|) E^u(x, 0, -\frac{\vec{p}_T^2}{(1-x)^2})$$



## Outlook: Possible "improvements" of the model:

- Implementation of non-perturbative scalar-glue/ fermion-glue vertices.
- Inclusion of axial-vector diquarks → prediction for d-quarks
- Try other nucleon-quark-diquark vertices.

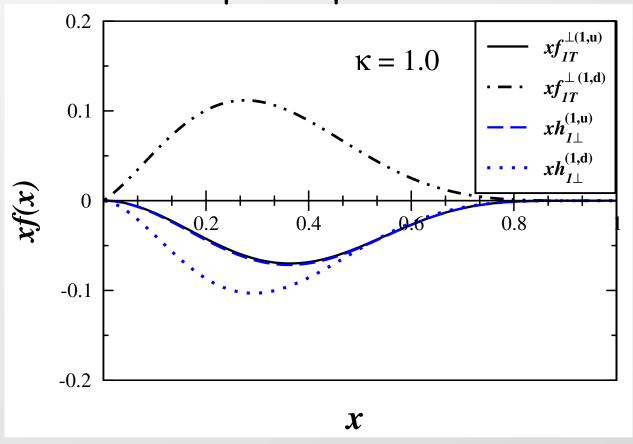




Gamberg et al.

- L. P. Gamberg et al., Phys Rev D67:071504, 2003
- L. P. Gamberg and G. R. Goldstein, arXiv:0708.0324, 2007

## Same sign u and d Boer-Mulders function from a diquark spectator model



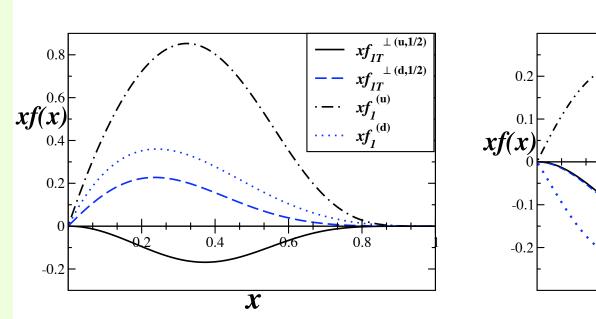
Collins calculated in the spectator framework

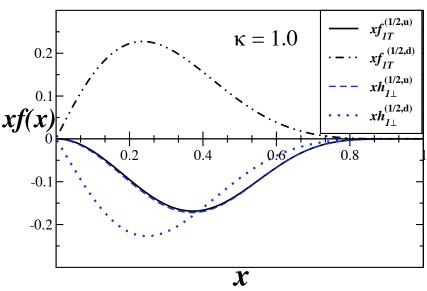
A. Bacchetta, et al., Phys. Lett. B 659, 234 (2008).

### Flavor Dependence: Results & Phenomenology

Flavor-dependent PDFs from diquark models:  $u = \frac{3}{2}s + \frac{1}{2}a$ , d = a,

moments:  $h_1^{\perp(1/2)}(x)=\int d^2\vec{p}_T\, \frac{|\vec{p}_T|}{M}h_1^\perp(x,\vec{p}_T^2)$  L.G. Goldstein, Schlegel PRD 2008





- ullet Comparison to  $f_1^{(u,d)}$  (Glück, Reya, Vogt) o parameters of the model, e.g. diquark masses, normalization...
- Comparison to parameterization of Sivers function  $f_{1T}^{\perp} \to \text{size}$  and sign of FSI Anselmino et al. 2005 PRD
- Boer Mulders up and down are negative is spectator model and  $f_{1T}^{(u)} \sim h_1^{\perp(u)}$

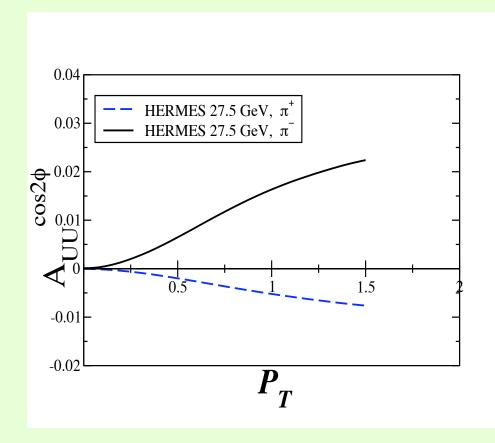
#### HERMES & CLAS12 PAC 30-Avakian, Meziani. . . L.G. . . L.G. Goldstein Schlegel PRD 2008

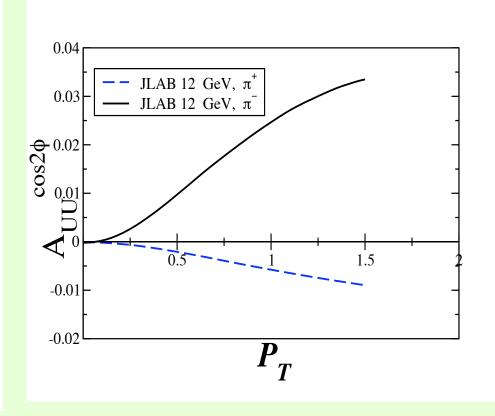
$$A_{UU}^{\cos(2\phi_h)} \propto \sum_{a} e_a^2 \int d^2 p_T d^2 k_T \, \delta^{(2)} \left( \vec{p}_T - \vec{k}_T - \frac{\vec{P}_{h\perp}}{z_h} \right) \frac{\vec{k}_T \cdot \vec{p}_T - 2(\vec{h} \cdot \vec{k}_T)(\vec{h} \cdot \vec{p}_T)}{Mm\pi} h_1^{\perp(a)} H_1^{\perp(a)}$$

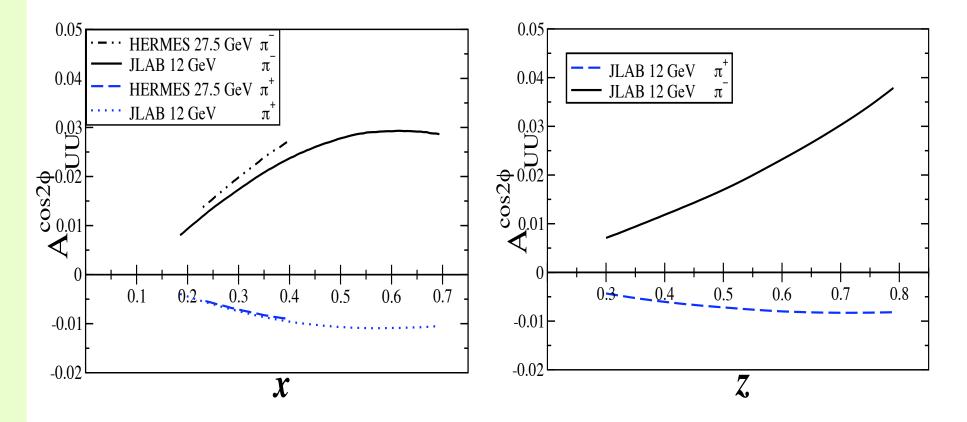
#### Model assumption:

#### **Dis-favored fragmentation**

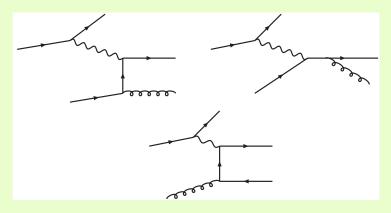
$$H_1^{\perp \ (d \to \pi^+)} = -H_1^{\perp \ (u \to \pi^+)}$$
,  $\sum_h \int_0^1 dz H_{1(q \to h)}^{\perp(1)} = 0$  Schäfer and Teryaev, PRD 2000







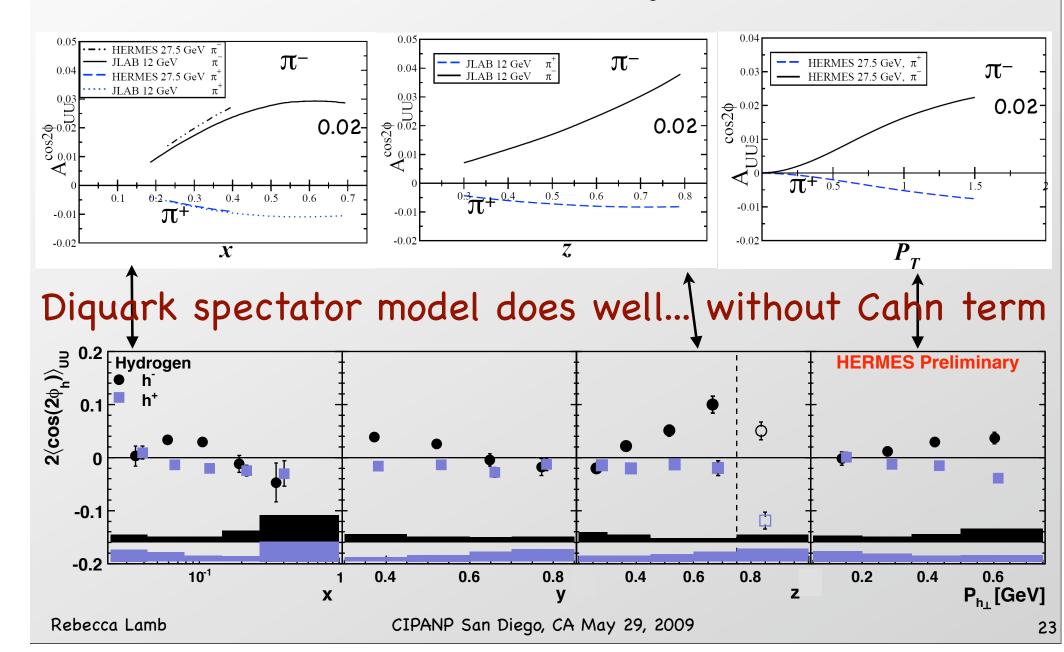
• Theory issues gluon brem and Cahn effect see Barone, Prokudin and Ma arXiv:0804.3024 [hep-ph] Bacchetta, Boer, Diehl, Mulders arXiv:0803.0227

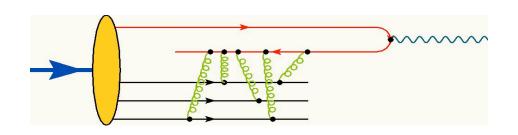


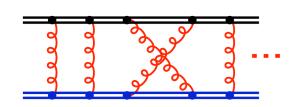
# I < cos(2 $\phi_h$ )>: Model 1 Gamberg et al.



- L. P. Gamberg et al., Phys Rev D67:071504, 2003
- L. P. Gamberg and G. R. Goldstein, arXiv:0708.0324, 2007

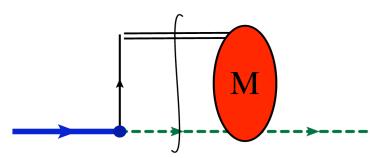






Can we do better? Can we learn about the quality of the relations?

[L. Gamberg, M.S., in preparation]



- Still work within spectator framework, but *non-perturbative model of FSI*.
- In order to separate out GPDs, "cut" the diagram → "natural" picture of FSI.

$$f_{1T}^{\perp,(1)u}(x) = -\frac{1}{2(1-x)M^2} \int \frac{d^2p_T}{(2\pi)^2} p_T^y I^y(x,|\vec{p_T}|) E^u(x,0,-\frac{\vec{p_T}^2}{(1-x)^2})$$

Lensing function given in terms of quark-diquark scattering amplitude M:

$$I^{y}(x, \vec{p}_{T}) = p_{T}^{y} \Im[M(x, |\vec{p}|_{T})] + \int \frac{d^{2}q_{T}}{(2\pi)^{2}} (2q_{T}^{y} - p_{T}^{y}) \Im[M(x, |\vec{q}_{T}|)] \Re[M(x, |\vec{q}_{T} - \vec{p}_{T}|)]$$

## Summary.... Improvements FSI times Spatial Distortion

Conjecture: factorization of final state interactions and spatial distortion:

$$\langle k_T^i \rangle = -M \epsilon_T^{ij} S_T^j f_{1T}^{\perp,(1)}(x) \simeq \int d^2 b_T \, \mathcal{I}^i(x, \vec{b}_T) \, \frac{\vec{b}_T \times \vec{S}_T}{M} \, \frac{\partial}{\partial b_T^2} \mathcal{E}(x, \vec{b}_T^2)$$

 $\mathcal{I}^i(x,\vec{b}_T^2)$  : Lensing Function = net transverse momentum

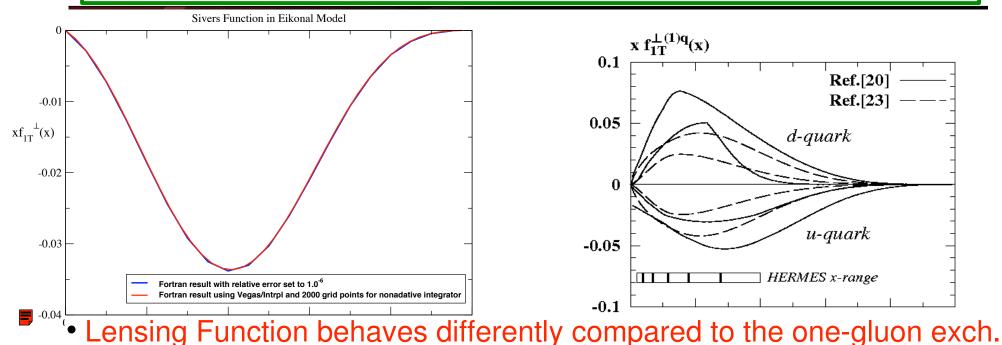
Av. transv. momentum of transv. pol. partons in an unpol. hadron:

$$\langle k_T^i \rangle^j(x) = \int d^2k_T \, k_T^i \, \frac{1}{2} \Big( \Phi^{[i\sigma^{i+}\gamma^5]}(S) + \Phi^{[i\sigma^{i+}\gamma^5]}(-S) \Big)$$

$$-2M^2 h_1^{\perp,(1)}(x) \simeq \int d^2b_T \, \vec{b_T} \cdot \vec{\mathcal{I}}(x, \vec{b_T}) \, \frac{\partial}{\partial b_T^2} \Big( \mathcal{E}_T + 2\tilde{\mathcal{H}}_T \Big)(x, \vec{b_T}) \Big|$$

## Preliminary Results

$$f_{1T}^{\perp,(1)u}(x) = -\frac{1}{2(1-x)M^2} \int \frac{d^2p_T}{(2\pi)^2} p_T^y I^y(x, |\vec{p_T}|) E^u(x, 0, -\frac{\vec{p}_T^2}{(1-x)^2})$$



## Outlook: Possible "improvements" of the model:

- Implementation of non-perturbative scalar-glue/ fermion-glue vertices.
- Inclusion of axial-vector diquarks → prediction for d-quarks
- Try other nucleon-quark-diquark vertices.